
ORIGINAL ARTICLE

Irene Mavrommati Æ Achilles Kameas

Panos Markopoulos

An editing tool that manages device associations
in an in-home environment

Received: 15 February 2004 / Accepted: 9 April 2004 / Published online: 26 June 2004
� Springer-Verlag London Limited 2004

Abstract The forthcoming home environment will
comprise numerous computationally enhanced artifacts
that are autonomous, but interconnected via an invisible
web of network-based services. The approach presented
in this paper is to enable end users to make their own
applications by linking such artifacts, which are treated
as reusable ‘‘components.’’ A key requirement to achieve
this is the availability of editing tools that meet the needs
of different classes of users. A tool of this kind designed
for end users is presented in this paper, together with the
outcome of user evaluation sessions.

Keywords Ubiquitous computing Æ Component
architectures Æ End-user programming

1 Introduction

A number of information appliances and ‘‘smart’’
products from the consumer electronics and white goods
industries are gradually being introduced into consum-
ers’ homes. Mundane objects of every-day use that are
enhanced with computing and communication capabil-
ities are being developed experimentally, whilst some are
appearing on the market already. Some examples of
such processing- and communication-enabled products

are the Internet fridge, Internet microwave oven, UPnP
hi-fi sets and DVD players, sensor-enabled toys, such as
Furby and other pet or robotic toys, tagged coffee mugs,
digital picture frames, sensor-/Internet-enabled furni-
ture, to mention but some. It seems that our future
environments will consist of an increasing number of
objects, furniture, and appliances that will be enhanced
with information communication capabilities, which will
be able to work synergistically with each other [1]. The
future home is expected to become populated by distinct
devices that are interconnected via an invisible web of
network-based services [2, 3]. The research challenges
relating to creating this future home environment are
not only technological (i.e., how do the objects and
appliances share common standards, how they com-
municate robustly with each other). Equally important
are the challenges that relate to the acceptance of this
new metaphor by people, and the resulting human
behavior (how do people develop an affinity with these
environments; how will the mental models of their
environments be re-shaped; what are the skills they will
develop to cope with behavioral dependencies between
objects that are not always visible) [4].

Several research projects are currently underway,
aiming to develop the necessary hardware and software
modules that will enable devices to communicate and
collaborate [5, 6, 7]; thus, we can safely assume that
future in-home devices will be functionally autonomous,
but able to synergize with each other, regardless of the
differences in their shape and functionality [4]. In project
e-Gadgets [8] we consider them as components of the in-
home environment, which can be freely associated with
several different ways, thus, collectively achieving dif-
ferent functions within the home. The functionality of
collections of objects may serve different purposes:
pleasure, play and fun, or home automation and task
facilitation.

The ability to ‘‘configure’’ and ‘‘reconfigure’’ [6] the
in-home devices stands as a driving concept behind this
vision, as it allows for end-user creativity to emerge in a
ubiquitous environment, where people can create their

I. Mavrommati
Department of Products and Systems Design Engineering,
University of the Aegean, Greece

I. Mavrommati (&) Æ A. Kameas
Computer Technology Institute, R. Ferraiou 61,
26221 Patra, Greece
E-mail: mavrommati@cti.gr
Tel.: +30-2610-273496
Fax: +30-2610-222086
E-mail: kameas@cti.gr

P. Markopoulos
Eindhoven University of Technology, PO Box 513,
5600 MB Eindhoven, The Netherlands
E-mail: P.Markopoulos@tue.nl

Pers Ubiquit Comput (2004) 8: 255–263
DOI 10.1007/s00779-004-0286-7



own niche applications or adapt their ubiquitous sur-
roundings [4, 9]. In order to realize this possibility,
firstly, one has to develop the concepts that will serve as
a common referent among people, designers of appli-
cations, and developers of technology. Based on these,
one has to:

1. Implement a universally applicable model of the
communication between components of the system
(that is, services, distinct objects, and in-home
appliances). Such a model needs to provide a com-
mon technology-independent upper layer (providing
the end-user functionality) and a lower layer that can
accommodate existing standards, system architec-
tures (such as UPnP, Jini, etc) and communication
protocols (such as Wi-Fi, Bluetooth, etc.).

2. Build mechanisms (appropriate tools/interfaces) with
which people can act upon their environment, and
manipulate the processing appliances, objects, and
services within it. Such control mechanisms can be
associated with existing appliances or built anew.

3. Reinforce the willingness and the ability of people to
use the in-home environment by developing tools
that provide them with a basic level of under-
standing of the in-home-environment and the
applications running. Such an environment will
consist of tangible or intangible components invisi-
bly interconnected via local or remote network links.
Thus, the tools must visualize the structure of the
environment and applications, present their current
state and content, explain their functionality, and
enable (or help) people manage the inter-component
associations.

In e-Gadgets, we defined and refined the Gadgetware
Architectural Style (GAS), which includes a set of con-
cepts and application rules, an enabling middleware, a
methodology, and a set of tools that enable people to
compose distributed applications from the services of-
fered by artifacts and devices. GAS applies concepts of
component-based software engineering to ubiquitous
computing environments [10].

In this paper, we present a control device via which a
number of in-home devices can be associated in different
ways: an editor which allows a greater control over the
in-home environment. We shall not delve into the par-
ticulars of GAS or other ubiquitous computing archi-
tecture/middleware, but, for the scope of this paper, we
consider that the interoperability between objects is
given, as it can be realized by existing/proposed archi-
tectures. After presenting the design and functionality of
the editor, we shall discuss the outcomes of a concept
test conducted with users and we shall give an indication
of people’s reactions to the editor.

Ubiquitous computing applications will have a
widespread impact in the home only if people can
understand a basic set of underlying technology con-
cepts behind ubiquitous computing; they may, thus,
develop a feeling of trust by experiencing their ability

to control such systems. As a consequence, in our
research, we did not adopt a ‘black-box’ engineering
approach where users are not able to observe the
structure of the system they are experiencing, but
rather, we used an opaque approach which partially
discloses the structure of a system. In the end-user-
trials, the validity of an ‘‘opaque’’ approach for ubiq-
uitous computing engineering is assessed. The same
concepts and constructs are provided in a more detailed
level to the manufacturers and builders of the appli-
cations, and may also be used by intelligent mecha-
nisms to adapt them in a black-box-type approach. The
approach of adopting an editor mechanism towards
the (re)configuration of ubiquitous computing applica-
tions by people aspires to provide them with a greater
degree of transparency into the ubiquitous computing
home.

2 Devices as components in the home

One assumption underlying GAS is that appliances and
objects in the home are manufactured to be autonomous
and functionally self-contained. Moreover, they can lo-
cally manage their resources (processor, memory, sen-
sors/actuators, etc.). GAS provides a compatibility
framework that is a layered middleware that enables
them to share definitions of services, exchange data,
interpret incoming messages correctly, and act
accordingly. Thus, GAS enables in-home artifacts and
appliances to be used as components of a non-a-priori-
defined system, and, at the same time, enables users to
play an active role in understanding and defining the
functionality of their ubiquitous environment. For this,
GAS provides a middleware that can directly interface
with hardware components and also serves as a layer on
top of existing network protocols or distributed system
architectures, enhancing them with GAS-specific func-
tionality.

The objects in an in-home environment can range
from simple (tags, lights, switches, cups) to complex
ones (PDAs, hi-fi, fridges), and from small ones (sensors,
pens, keys, books) to large ones (desks, chairs, carpets,
rooms). By associating these home devices together into
collaborating collections, people can shape their own
environment. Such an approach supports the develop-
ment of open systems [11] and, at the same time, can be
used to explain the system to people; this is necessary in
order for them to be able to manipulate such environ-
ments.

At the conceptual level, GAS includes the plug–syn-
apse model, which regards each object in an in-home
environment as having a set of abilities and offering or
requesting a set of services; these abilities, which can be
inter-associated, are visualized via the software con-
struction of plugs. People can associate compatible plugs
(thus, creating synapses) and establish a composition of
the respective services/functions (Fig. 1).

256

daisy
Rectangle



2.1 An example

Let’s take a look at the life of Patricia, a 27-year-old
single woman, who lives in a small apartment near the
city center and studies Spanish literature at the Open
University. A few days ago, she passed by a store where
she saw an advertisement about ‘‘extrovert Gadgets.’’
Pat decided to enter. Half an hour later, she had given
herself a very unusual present: a few furniture pieces and
other devices that would turn her apartment into a smart
one! The next day, she was anxiously waiting for the
delivery of an e-Desk (it could sense light intensity,
temperature, and weight on it), an e-Chair (it could tell
whether someone was sitting on it), a couple of e-Lamps
(one could remotely turn them on and off), some e-Book
tags (they could be attached to a book, tell whether a
book is open or closed, and determine the amount of
light that falls on the book), and... an e-Carpet (you just
had to step on it). Pat had asked the store employee to
pre-configure some of the e-Gadgets so that she could
create a smart studying corner in her living room. Her
idea was simple (she felt a little silly when she spoke to
the employee about it): when she sat on the chair and
drew it near the desk and then open a book on it, the
study lamp should be switched on automatically. If she
closes the book or stands up, then the light should go off
(she hadn’t thought of any use for the carpet, but she
liked the colors).

For research purposes, a number of domestic objects
and furniture have been augmented with computation
and communication capabilities and turned into
e-Gadgets. This ‘‘GASification process’’ is a stepwise

methodology that ensures that all the necessary hard-
ware and software modules are installed in the object
and initialized correctly.

In order to turn an everyday object into an e-Gadget,
firstly, one has to attach to it a set of sensors and
actuators. For example, in order for the e-Table to be
able to sense weight, luminosity, temperature, and
proximity, it has to be equipped with pressure pads,
luminosity sensors, and an infrared sensor. Pressure
pads are mounted underneath its top surface and cover
its entirety. Luminosity and temperature sensors are
evenly distributed on the surface. Four infrared sensors
are placed on the legs of the table and another on its top
(Fig. 2).

There’s a lot of circuitry that connects these sensors
with power sources (replaceable batteries in this case)
and with driving hardware modules. The latter are
required in order to collect and filter sensor readings into
the GAS-OS middleware, which currently runs on an
iPaq attached to the object (to preserve autonomy of
objects, an iPaq per artifact was used, providing the
required processing and communication hardware).

Once the hardware is installed, one has to install
GAS-OS in the artifact’s iPaq and configure it to inter-
face with the hardware. This is achieved via a special
software module, the Gadget-OS, which interfaces with
an FPGA that drives the sensors. When these objects
have reached beyond the prototype stage, all necessary
hardware (including sensors, processor, wireless module,
battery, boards, and circuitry) will be embedded into
them during their manufacture; all that will be required
is to download GAS-OS in them and configure it for the
specific object.

The latter step includes the definition of the artifact’s
ID and its plugs (properties, services, capabilities) in a
way that will be understandable by other artifacts. This
is done by creating XML-based descriptions of plugs
using universally agreed core ontology (a vocabulary of
basic terms) [12]. The uniqueness of the ID is achieved
with a process similar to the one used for Mac addresses
[13]. All these are used by the GAS-OS modules in order
to manage plugs and synapses, create sensor readings
into messages, translate incoming messages into service
requests, etc. GAS-OS runs in Java, but relies only on
features available in Java Personal Edition, compatible
with the J2ME personal profile. This allows deployment
on a wide range of devices, from mobile phones and

Fig. 2 The top surface of the
e-Table and the supporting
circuitry underneath

Fig. 1 An abstract visualization of the plug–synapse model

257

daisy
Rectangle



PDAs to specialized Java processors. The proliferation
of end-systems capable of executing Java make Java a
suitable underlying layer, providing a uniform abstrac-
tion for the middleware.

3 The editor functionality

3.1 The editor’s interaction model

People can supervise the functional capabilities of
devices in the home via other specialized devices; the
editors. GAS editors currently provide an integrated
graphical user interface (GUI); potentially, they may be
linked to multimodal interfaces integrated in the envi-
ronment, such as speech or gesture input systems. With
editors, it is possible to supervise and interface with the
various in-home appliances. One can supervise the inter-
connectable capabilities of an appliance (the plugs).
Finally, people can act upon these capabilities by
associating them into matching pairs that serve specific
functions (the synapses); they can break existing
associations, pause them, or add parameters in the
association to influence the details of the function
(Fig. 3). The synaptic associations created/edited are not
stored locally (i.e., in an editor), but are stored in the
distributed appliances and objects within the home
environment. Thus, in the case of failure or object
movement beyond network range, much of the appli-
cation functionality can be restored.

The editing capabilities can be used by designers to
create ubiquitous computing applications, without
having to start from scratch, as they may reuse existing
component objects [6]. They may be used by end users to
personalize ubiquitous applications, or for exercising
their own creativity in building novel associations for
niche or innovative functions. The core editor
functionality can also be accessed directly by intelligent
agents that construct and adapt applications by
monitoring user behavior.

3.2 Examples of linking appliances as components

The behavior requested by Pat requires the following set
of e-Gadgets: e-Desk, e-Chair, e-Lamp, e-Book. The
collective function of this application (we use the term
Gadgetworld for GAS-compatible ubiquitous comput-
ing applications) can be described as: when the partic-
ular CHAIR is NEAR the DESK AND ANY BOOK is
ON the DESK, AND SOMEONE is sitting on the
CHAIR AND the BOOK is OPEN THEN TURN the
LAMP ON.

In order to achieve the collective functionality
required by Pat, the employee in the store had to create a
set of synapses among e-Gadgets’ plugs (Fig. 4). This
type of functionality and component structure is created,
inspected, and modified through the editor. For exam-
ple, Pat can subsequently define the intensity of the
e-Lamp when it is being automatically switched on; thus,
the light won’t blind her. Or, if an intelligent agent is
used, it could adjust the light intensity each time, based
on the overall amount of light in the room, as it is
recorded by luminosity sensors distributed on objects in
the room.

Fig. 3 Use of the PDA-based
editor by a test subject

Fig. 4 Schematic representation of the connections between appli-
ances in the described scenario

258

daisy
Rectangle



3.3 Editing functionality

The main role of the editor is to allow the user to create
and edit synaptic associations between appliances. An
association can be established between two capabilities
when these are available via the digital self of a device.
The user has to indicate which two capability plugs to
associate and link them with each other; therefore, a
cause–effect relationship is forged between the objects.
The editor uses the services of GAS-OS to support
editing actions.

The purpose of the editor is threefold:

1. To indicate/make visible the available enhanced
devices and appliances in one’s home environment,
and their existing functional dependencies

2. To form new associations between devices in order to
achieve certain functions or to insert new devices and
objects in a Gadgetworld

3. To assist with debugging, editing, servicing, etc.

The editor identifies the information communication
devices in the vicinity of the home. It also sees the
capabilities offered by each device that can be inter-
connectable. Such capabilities have a direct relationship
with the actuating/sensing capabilities of the objects and
the functions that are intended by the appliance manu-
facturers. Nevertheless, some of these capabilities
(especially more complex ones) may not be obvious to
people, apart from via the editor.

In addition the editor identifies the current working
groups of associated appliances in the home (the current
configurations that are available) and displays them for
supervision. The links between the compatible capabili-
ties of appliances are visualized and can be manipulated
through the editor. In the test bed implementation, this
is done by a GUI using an association matrix, as shown
in Fig. 7. Associations between certain capabilities of
appliances/objects can be formed, thus, creating con-
figuration sets for a certain purpose.

The identification and selection of capabilities (plugs)
via the editor is a task that depends on the user expertise.
A novice user might not be interested in, or understand,
more than just the description of the capability; (s)he can
then base his/her selection on a natural language
description that is proposed in the design of the editor.
A more advanced/experienced user may prefer to see

more of the technical details in order to make his/her
selection of the capability.

Once such a set of synaptic associations is estab-
lished, the part of the operating system that runs on each
participating device ensures that it works. The associa-
tions that are activated will operate as long as the user
wants them to (until (s)he deactivates or deletes them),
unless there is a technical inability to maintain its
functionality (i.e., one participating object is out of
range, non-responsive, etc.).

3.4 High-level architecture

The editor is designed to be compatible with the in-home
appliances. It is a piece of software that can run on top
of an existing information appliance (such as a PDA or a
PC), while the top software layer utilizes the particular
interface resources of the appliance it is residing at.
Therefore, its core is independent from the device it runs
on, allowing for a multitude of interaction modalities to
be implemented. Two implementations have been cre-
ated using on-screen interfaces, on a handheld computer
and a laptop computer (Fig. 5). This enabled us to test
the editor concepts in a portable form.

The editor’s high-level architecture consists of three
layers (Fig. 6):

– The operating system layer, which offers to the editor
its communication capabilities and knowledge of
other connectable appliances interfaces

– The editor manager layer, which provides abstraction
of the interface layer, as well as compatibility with the
function layer. It contains all the structures and
functionalities needed by the editor.

– The user interface layer that is responsible for pro-
viding any interactions with the end user, as well as
any other operations that the editor provides

3.5 Current editor implementation

Two versions of the editor have been created in order to
test the primary editing functions. The one with richer
functionality runs on a laptop or PC and was designed
with ‘‘professional’’ designers in mind. The second, and

Fig. 5 Two implemented
versions of the editor on PDA
(left) and PC (right)

259

daisy
Rectangle



simpler one, runs on an iPAQ handheld computer and is
intended for the non-trained end user. Twelve sample
devices have been modified in order to be compatible so
that they can be seen and associated in a number of ways
by the editor. In the current implementation, the GUI is
handled at the interface layer and all the functions
required of the GUI (like discovery of devices, activation
of functional association sets, etc.) are mapped to the
actual operating system functions in the function layer,
via the intermediate layer.

The editor designed for use on a laptop or PC con-
sists of several panes. There is a pane that lists the
devices in the vicinity, called the listing pane. From the
listing pane, the user can drag-and-drop selected devices
into the editing pane. Upon selection of two devices, an
association matrix that shows both devices’ capabilities
opens up. Tagging a square on this matrix associates the
two capabilities (with preset properties). If the user
wants to change the specific details of this association,
they can do so by opening the mappings window, and
modifying the properties of each capability in the asso-
ciation. The newly created application then needs to be
named and activated. When this has been done, the user

can test the association set by using the physical devices
(in order to ensure that the configuration is working as
planned); alternatively (s)he can use the editor and
adjust the association mappings (properties) or delete
the total set of connections.

The PC interface of the editor (Figs. 4 and 7) allows
several ways of working—the two most prominent are
the clockwise operation and the counterclockwise oper-
ation. In the clockwise operation, the user creates a new
configuration starting from the selection of the devices;
then, (s)he identifies which capabilities (s)he wants to
use and links them in an association and finally specifies
the parameters of this association (its properties).
The counterclockwise operation is suggested so that the
formation of the Functional set can be based on a
description of the functionality that the user intended.
(Searching for already established sets (based on similar
target functions) and using a natural language descrip-
tion interface in order to figure out the devices needed
and the synapses required to achieve the requested
function).

The panes that are suggested in the design of the
editor allow the editing task to start from any level: one
can search for the capabilities required first and then
deduce the devices, or one can search for devices based
on their class and perform operations on sets of the
devices.

In the working prototype of the editor, the primary
functions that enable the creation of associations were
quite robustly implemented (discovery and visualization
of artifacts and their capabilities; creating associations;
setting the properties of these associations, naming and
activating a functional set of associations; activating,
deactivating, deleting each association or each set), while
the auxiliary natural dialog and facilitating operations
part have not been implemented.

The working prototype using the screen and GUI on
a PC/laptop gives the primary functions using similar
panes as the ones suggested in the design phase. It
provides in a rather extended way the editing items for
supervision and manipulation.

The working prototype version of the editor on a
PDA contains the same primary functions, but in a more
condensed way that guides the user through a stepwise

Fig. 7 Draft design of a GUI
proposed for the editor
(for a PC)

Fig. 6 Schematic representation of the editor layers

260

daisy
Rectangle



process for creating a Gadgetworld. This is partly
dictated by the small display size. Due to its stepwise
approach and the limit imposed on the amount of
presented information and options at any one time, it is
easier to use. Consequently, the PDA-based implemen-
tation was the one used for evaluation purposes (Fig. 3).

4 Concept evaluation

A central research question is how acceptable it is for
end users to manipulate the various devices in the home
environment. This is linked to the extent to which users
comprehend the concepts underlying the editor, and
their willingness to use it. A concept evaluation was
conducted with the editor that revolved around two
axes: comprehensibility of the underlying concepts and
willingness to use such technology. The editor was
evaluated as one part of a broader system and concepts
that were proposed by the e-Gadgets project. The editor
evaluation did not focus on the specific design details,
i.e., the look and feel of the GUI. Rather, it aimed to
assess the role that ‘‘editing’’ can play in the future home
environment and how it the extent to which it is per-
ceived to satisfy user needs.

Initially, an expert appraisal was carried out to
evaluate the proposed interaction concepts and tech-
nology with respect to the end-user requirements. The
evaluation was conducted in phases. First, an expert
review was conducted in the form of a workshop. Sub-
sequently, the cognitive dimensions framework [14] was
applied to assess how well the e-Gadgets concepts sup-
port end users in composing and personalizing their own
ubiquitous computing environments. In this first round
of evaluation, a first version of the editor was used,
together with paper mock-ups. The nature of the eval-
uation was formative, i.e., it aimed to suggest directions
for the next steps of the project which would ensure that
user needs are taken into account. After a working
prototype of the editor was developed (using a GUI in a
PDA), the concepts were tested through a hands-on
demonstrator at two events and a wealth of question-
naires were collected.

4.1 Expert appraisal

The end user that would engage in editing applications
in one’s in-home environment is considered to be a
‘‘technophile’’ but not a programmer; three experts in
user system interaction that matched this profile per-
formed a set of evaluation activities during a workshop
evaluation session (the workshop activities and out-
comes are described extensively in [15]). The basic con-
cepts were introduced in a short introductory session to
familiarize experts. Four scenarios were discussed which
highlighted different usage/interaction design issues. A
small discussion in a focus-group-format followed each
scenario. A problem solving exercise was set to gauge the

extent to which these experts could construct an in-home
application and, further, to reflect on what they consider
as problems of doing this. A design draft (paper mock-
up) of the GUI proposal for the editor and some video
prototypes presenting different multimodalities were
demonstrated and expert opinions were solicited.
Finally, an open-ended discussion elicited global level
feedback for the project.

In the evaluation session, a broader set of issues was
addressed, relating to a model of a component-based
approach for the ubiquitous computing home. A subset
of the evaluation tasks concerned the editor. Some of the
most recurring themes of the discussion relating specif-
ically to the editor were:

– Ubiquitous computing technologies embedded in
physical objects add hidden behavior and complexity
to them. Problems may arise if this behavior is not
observable, inspectable, and predictable for the user.

– Intelligence causes problems of operability and
unpredictability for users. It must be used with cau-
tion and this should be reflected in the demonstrations
built.

– Constructing and modifying applications in the
ubiquitous home is a problem solving activity per-
formed by end users. As such, it has an algorithmic
nature and, thus, good programming support should
be offered.

4.2 Cognitive dimensions evaluation

Following the last observation, the expert conducting
the evaluation has conducted a further assessment using
the cognitive dimensions framework [14]; a broad-brush
technique for the evaluation of visual notations or
interactive devices. It helps expose trade-offs that are
made in the design of such notations, with respect to the
ability of humans to translate their intentions to
sequences of actions (usually implemented as programs)
and to manage and comprehend the programs they
compose. Broadly, the editor facilitates the creation of
in-home applications that are composed in non-textual
manner. Thus, this theoretically founded technique can
be used to provide insight into selecting between alter-
native choices with respect to providing tools for
applications construction. Some of the most interesting
points resulting from the evaluation with the cognitive
dimensions framework were the following:

– There will always be an initial gap between their
intentions and the resulting functionality of a user-
composed application. Users will have to bridge this
gap based on the experience they develop after a trial-
and-error process. An editor can shorten this initial
gap by allowing several different ways of expressing
the user’s goals.

– Since an object can be part of several in-home appli-
cations at the same time, the effect it has on each is not
easy to understand from the physical appearance.

261

daisy
Rectangle



Developments of the editor will need a way to illus-
trate to the user how the specification of the parts
influences the dynamic behavior of the whole appli-
cation (similar to debuggers in object-oriented envi-
ronments).

– Editors should aim to bridge the gap between archi-
tectural descriptions of an application and the user’s
own conceptualizations, which might be rule-based,
task-oriented, etc. (improving the closeness of map-
ping dimension).

– To edit in-home applications, the editor requires only
a few conventions to be learnt by the end user
(appropriately low terseness).

– The editor should make observable logical depen-
dencies between seemingly unrelated physical objects
(hidden dependencies). There are side effects in
constructing applications. A state change in one
component may have non-visible implications on the
function of another. In the conceptual diagrams used
during the discussion (Fig. 3), dependencies were
directly visible. However, in the GUI mock-up shown
in the evaluation, connections and their rules are not
shown. Some way of visualizing and inspecting such
connections needs to be added.

– An object can belong to several applications; the effect
it has on each is not easy to understand from the
physical appearance (role expressiveness). (A way to
show this is to represent it via the editor.)

– The abstraction level is appropriate for the target user
audience (abstraction gradient dimension).

4.3 Surveys at two conferences

An the second stage, the working editor prototype
developed (using a GUI of a PDA and one on a PC) was
presented through two hands-on demonstrations at two
events. One session was during the ‘‘Tales of the Dis-
appearing Computer’’ event in May 2003 (where ten
completed survey questionnaires were received). The
second session was at the British Annual Conference on
Human Computer Interaction (where 29 completed
questionnaires were received).

The demonstration featured an editor running on a
PDA that supported discovery and use of another three
appropriately converted devices in the room: a Mathmos
tumbler light, an MP3 player, and a pressure-sensitive
floor mat. Conference delegates were invited to make
their own associations by connecting the components
available using the editor. After a short introduction,
delegates were able to compose applications in order to
control the music played by positioning themselves on
the floor mat or by flipping the Mathmos tumbler on its
side (as it resembles a luminous brick).

A wealth of comments was collected in the ques-
tionnaires. For example, thirteen delegates found that
this technology will not be used because it is too com-
plex; eleven noted that is very easy to create and modify
applications, and four said that it is very easy to learn to

use it. Five delegates noted that it would not be easy for
users to appreciate the benefits of this technology.

4.4 Sum up of the evaluation outcomes

The feedback that relates to the editing tools can be
summed up as follows:

– The application behavior should not surprise the user,
i.e., automation or adaptation actions should be vis-
ible and predictable (or at least justifiable).

– End users acting as ubiquitous application developers
should be supported with at least as good tools as
programmers have at their disposal, e.g., debuggers,
object browsers, help, etc.

– Multiple means to define user intentions should be
supported by the GUI of the editor, as the users’ tasks
tend to be comprehended and expressed in a variety of
ways.

– The acceptability of the Gadgetworld concepts
depend on the quality of the actual tools and their
design.

5 Conclusions

We attempted to provide a level of transparency into the
ubiquitous environment by giving end users the ability
to construct or modify ubiquitous computing environ-
ments. To do this, concepts of component-based soft-
ware were taken and applied in order to treat physical
objects as components of ubiquitous computing envi-
ronments.

A novelty of the editing approach in the home envi-
ronment is that artifacts are treated as reusable ‘‘com-
ponents.’’ The component architecture is made directly
visible and accessible via the editor. This enables end
users to act as programmers. This end-user program-
ming approach may be especially suitable for ubiquitous
computing applications. The possibility to reuse devices
for several purposes—not all accounted for during their
design—opens up possibilities for emergent uses of
ubiquitous devices whereby the emergence results from
actual use.

As a lot depends on the editing tools in terms of
interface and interaction, and also extensive auxiliary
functionality to aid with the editing tasks, our future
work aims to address the GUI design and development
of one complete editor in an iterative design process.

Acknowledgements We would like to thank N. Drossos and
J. Calemis for developing the working software of the editor.

References

1. Aarts E, Marzano S (eds) (2003) The new everyday: visions of
ambient intelligence. 010 Publishing, Rotterdam, The
Netherlands

262

daisy
Rectangle



2. Aarts E, Harwig H, Schuurmans M (2001) Ambient intelli-
gence. In: Denning JP (ed) The invisible future. McGraw Hill,
New York, pp 235–250

3. Harwig R, Emile A (2002) Ambient intelligence: invisible
electronics emerging. In: Proceedings of the international
interconnect technology conference (IITC 2002), San
Francisco, California, June 2002

4. Mavrommati I, Kameas A (2003) The evolution of objects into
hyper-objects: will it be mostly harmless? In: Proceedings of the
1st international conference on appliance design (1AD), Bristol,
UK, 6–8 May 2003

5. The Disappearing Computer (DC) initiative, http://
www.disappearing-computer.net/

6. Newman W, Sedivy J, Neuwirth CM, Edwards K, Hong JI,
Izadi S, Marcelo K, Smith TF (2002) Designing for serendipity:
supporting end-user configuration of ubiquitous computing
environments. In: Proceedings of the conference on designing
interactive systems (DIS 2002), London, UK, June 2002, ACM
Press, pp 147–156

7. Humble J, Crabtree A, Hemmings T, Åkesson KP, Koleva B,
Rodden T, Hansson P (2003) ‘‘Playing with the bits’’: user-
configuration of ubiquitous domestic environments. In: Pro-
ceedings of the 5th international conference on ubiquitous
computing (Ubicomp 2003), Seattle, Washington, October
2003

8. Extrovert Gadgets (e-Gadgets) Projects, http://www.extrovert-
gadgets.net

9. Rodden T, Benford S (2003) The evolution of buildings and
implications for the design of ubiquitous domestic environ-

ments. In: Proceedings of the CHI 2003 conference on human
factors in computing, Florida, USA, 5–10 April 2003

10. Kameas A, Bellis S, Mavrommati I, Delanay K, Colley M,
Pounds Cornish A (2003) An architecture that treats everyday
objects as communicating tangible components. In: Proceed-
ings of the 1st IEEE international conference on pervasive
computing and communications (PerCom 2003), Forth Worth,
Texas, 23–26 March 2003

11. Schneider JG, Nierstrasz O (1994) Components, scripts and
glue. In: Hall J, Hall P (eds) Software architectures—advances
and applications. Springer, Berlin Heidelberg New York,
pp 13–25

12. Christopoulou E, Kameas A (2004) GAS ontology: an ontol-
ogy for collaboration among ubiquitous computing devices. Int
J Hum Comput St (to appear in Protégé special issue)

13. Ringas D, Kameas A, Mavrommati I, Wason P (2002) eComP:
an architecture that supports P2P networking among ubiqui-
tous computing devices. In: Proceedings of the 2nd IEEE
international conference on peer to peer computing (P2P 2002),
Linköping, Sweden, 5–7 September 2002

14. Green TRG, Petre M (1996) Usability analysis of visual pro-
gramming environments: a cognitive dimensions framework.
J Vis Lang Comput 7:131–174

15. Mavrommati I, Kameas A, Markopoulos P (2003) Visibility
and accessibility of a component-based approach for ubiqui-
tous computing applications: the e-Gadgets case. In: Proceed-
ings of the 10th international conference on human–computer
interaction (HCI International 2003), Crete, Greece, June 2003

263

daisy
Rectangle


